植保机械田间作业效率与施药效果试验评价报告

常德市鼎城区植保植检站

为了集中展示，前国内人较先进的植保施药机械，通过田间示范，对田间作业效率和施药效率进行评价，通过网络发布评价结果，为全省专业化防治服务组织选择施药装备提供实践依据。在湖南省植保植检站的主持下，在我区谢家铺镇港中村组织实施了植保施药机械田间作业集中展示，现将植保施药机械田间作业效率与施药效果评价报告如下：

一，示范目的

1，评价单旋翼无人植保机，多旋翼无人植保机，自走式喷杆喷雾机，远程精准喷雾机和大型担架式喷雾机从开始配药到完成施药全过程的作业效率。

2，评价单旋翼无人植保机，多旋翼无人植保机，自走式喷杆喷雾机，远程精准喷雾机和大型担架式喷雾机对水稻二化螟，纹枯病，稻纵卷叶螟和稻飞風的防治效果。

二，示范方案

1，示范地点：常德市鼎城区谢家铺镇港中村。
2，示范区基本情况：示范区地势平坦，土壤为粘壤土，耕作层土壤有机质含量 1.3% ，碱解氮 105 ppm ，有效磷 38 ppm ，有效钾 66 ppm ，ph 值 6.5 ，土壤肥力中等，地力较均匀。示范区供试水稻面积 249.6 亩，其中施药面积 249 亩，空白对照面积 0.6 亩。水稻种植方式为抛秧和直播，其中扡秧面积 143 亩，品种为中早39，3月20日播种，4月15日抛秧。直播面积106．6亩，品种为87早，4月 10 日播种。施肥情况：基肥一般亩施 40% 复合肥 50 斤，追肥亩施尿素 10 斤＋钾肥 10 斤，或亩施 40% 复合肥 15 斤， 4 月 25 日左右撒施。

3，示范设计：本示范共设 11 个处理，即每种供试机械各 1 个处理，加 1 个空白对照处理。每种供试机械的施药面积及排列顺序见下表：

施药机械施药效果与作业效率评价试验处理设计

处	机械类型	型 号	供试单位	施药面积
1	多旋翼无人机	ZN－1805	广州尊农	9.1 亩
2	远程精准喷雾机	LB－30C	湖声示茂	10.6 亩
3	单旋翼无人机	TH80 2		31.3 亩
4	单旋翼无人水	$320-13$	湖南金骏	35．2亩
5	自走式考需机	3WP－500	日本丸山	31.7 亩
6	自走式喷雾机	3WSH－1000	三禾永佳	39.6 亩
7	担架式喷雾机	3WD－11Y	常德宏瑞奇	35.4 亩
8	多旋翼无人机	SDDT－SZ5A	常德邦达	24.9 亩
9	多旋翼无人机	TXC8－5	河南田秀才	19.6 亩
10	多旋翼无人机	T1000VL	深圳莲花百川	11.6 亩
11	空白对照			0.6 亩

4，施药时间，防治对象及防治药剂：本示范共安排 2 次用药。
第一次施药时间为5月11日，防治一代二化蛽，预防纹枯病，稻瘟病。防治药剂：亩用 20% 氯虫苯甲酰胺 SC 10 毫升＋ 30% 苯丙甲环唑 EC 15 毫升 $+40 \%$ 稻瘟灵 EC 80 毫升。

第二施药时间为 6 月 12 日，防治稻纵卷叶螟，稻飞蛗，纹枯病，预防稻瘟病。防治药剂：亩用 10% 阿维•氟酰胺SC 30 毫升 $+10 \%$ 烯啶虫胺AS 50 克＋ 75% 肟菌•戊唑醇 WG 15 克。

沉降剂和粘着剂所有供试机械统一使用。以上药剂均由常德宏瑞奇植保服务有限公司提供。

广州尊农多旋翼无人机未参加第一次施药，此次施药由常德宏瑞奇植保服务有限公司自行补施。

三，施药机械作业效率及防治效果调查

（一）施药机械作业效率调查

工作人员和机械就位后，从开始配药起开始计时，记录完成作业面积施药所需时间，包括期间的更换电池，加油，添加药剂等所花时间（分钟），分别统计准

备工作所需时间和纯施药所需时间，统计每台施药机械的工作人员数（人）。分别计算施药效率（亩／分钟／人）和作业效率（亩／分钟／人）：

作业面积（亩）
施药效率 $=$
施药所花时间 (分钟) *工作人员数 (人)

作业效率 $=\frac{\text { 作业面积（亩）}}{\text { 作业所花总时间（分钟）＊工作人员数（人）}}$
据统计，第一次施药的作业效与在 $7.09-03$ 直／分钟／人之间，多旋翼无人机最高，作业效率在 0.3 亩，分钟 人乍右，其次为单旋翼无人机和日本丸山自走式喷雾机，作业效率在 $16-0.21$ 亩／分钟／人之间，三禾永佳自走式喷雾机和担架式喷雾机最低，作业效率为 0.09 亩／分钟／人。

第一次施药的施药效率在 $0.11-0.61$ 亩／分钟／人之间，河南田秀才多旋翼无人机最高，施药效率为 0.61 亩／分钟／人，担架式喷雾机最低，施药效率为 0.11亩／分钟／人，深圳莲花百川多旋翼无人机 0.49 亩／分钟／人，常德邦达多旋翼无人机 0.43 亩／分钟／人，湖南金骏单旋翼无人机 0.41 亩／分钟／人，湖南丰茂远程精准喷雾机 0.37 亩／分钟／人，大方植保单旋翼无人机 0.34 亩／分钟／人，日本丸山自走式喷雾机 0.25 亩／分钟／人，三禾永佳自走式喷雾机 0.12 亩／分钟／人。（详见附表1）

第二次施药的作业效率在 0．06－0．45亩／分钟／人之间，河南田秀才多旋翼无人机最高，作业效率为 0.45 亩／分钟／人，担架式喷雾机最低，作业效率为 0.06亩／分钟／人，其他机械作业效率在 0.2 亩／分钟／人左右。

第二次施药的施药效率在 0．06－1．08 亩／分钟／人之间，河南田秀才多旋翼无人机最高，施药效率为 1.08 亩／分钟／人，担架式喷雾机最低，施药效率为 0.06亩／分钟／人，深圳莲花百川，广州尊农多旋翼无人机，大方植保单旋翼无人机，施药效率均为 0.31 亩／分钟／人，常德邦达多旋翼无人机施药效率为 0.32 亩／分钟／人，湖南金骏单旋翼无人机施药效率为 0.29 亩／分钟／人，湖南丰茂远程精准喷雾机施药效率为 0.13 亩／分钟／人，日本丸山自走式喷雾机施药效率为 0.36 亩 ／分钟／人，三禾永佳自走式喷雾机施药效率为 0.21 亩／分钟／人。（详见附表2）

（二）施药机械防治效果调查

从第一次施药防治时开始，每种施药机械施药区各固定一丘田作为防治效果调查田，所有调查对象均到该固定田块进行，直到所有调查结束。施药前调查基数，施药后调查防效。调查主要对象：二化螟，纹枯病，稻纵卷叶蛽和稻飞風。

1，二化蛽防效
药后 7 天调查对二化蛽幼虫的防效，药后 30 天在二化蛽为害症状稳定后，调查枯心（白穗）防效。采用平行跳跃式取样，每小区调查 100 丛稻，统计药后活虫数，枯心率或白穗数。

药效计算方法：

$$
\text { 幼虫防效 }(\%)=- \text { 对照区药后活虫数 }- \text { 处理区药后活虫数 }
$$

$$
\text { 枯心(白穗)率 }(\%)=\frac{\text { 认查标心白楒)数 }}{\substack{\text { 调查总株(穗) 数 }}} \times 100
$$

$$
\text { 防治效果 }(\%)=\frac{\text { 对照区药后枯心(白穗)率 }- \text { 处理区药后枯心(白穗)率 }}{---\infty \times 100}
$$

药后 7 天对二化螟幼虫的防效：自走式喷雾机和担架式喷雾机防效最高，均为 94.4% ，其次为常德邦达多旋翼无人机，防效为 88.9% ，深圳莲花百川多旋翼无人机和大方植保单旋翼无人机，防效均为 83.3% ，河南田秀才多旋翼无人机防效为 77.8% ，湖南金骏单旋翼无人机和湖南丰茂远程精准喷雾机防效均为 72.2% 。 （详见表3）

药后 30 天防治效果：三禾永佳自走式喷雾机防效为 83.1% ，担架式喷雾机防效为 81.7% ，日本丸山自走式喷雾机防效为 78.9% ，常德邦达多旋翼无人机防效为 60.6% ，河南田秀才多旋翼无人机防效为 53.5% ，湖南金骏单旋翼无人机为 49.3% ，深圳莲花百川多旋翼无人机和大方植保单旋翼无人机均为 46.5% ，湖南丰茂远程精准喷雾机防效为 36.6% 。因对照田二化蛽基数偏低，危害较轻，导致调查结果偏低。（详见表4）

2，稻纵卷叶蟆防效

药前调查幼虫基数，药后 7 天和药后 14 天调查幼虫防效和卷叶率相对防效。每处理固定一丘调查田，五点取样共查 100 丛稻，统计活虫数和卷叶率，计算幼虫减退率和校正防效，并与对照区卷叶率比较，计算卷叶率相对防效。

药效计算方法：
药前活虫数－药后活虫数
虫口减退率 $(\%)=-100$

$$
\begin{aligned}
& \text { 校正防效 }(\%)=\frac{\text { 处理区虫口减退率 }- \text { 空白对照区虫口减退率 }}{\text { 1-空白对照区虫口减退率 }} \times 100 \\
& \text { 卷叶率 }(\%)=\frac{\text { 调查卷叶数 }}{\text { 调查总叶数 }} \times 100 \\
& \text { 相对防效 }(\%)=-\frac{\text { 对照区卷叶率 }- \text { 处理区卷叶率 }}{-200} \times 100 \\
& \text { 对照区卷叶率 }
\end{aligned}
$$

药后 7 天调查结果，对幼虫的校立防攵：常德邦达多旋翼无人机和大方植保单旋翼无人机防效地为 8 ？ 3% ，广州尊农多旋翼无人机防效为 82.7% ，日本丸山自走式喷雾机和担架式喷雾机防效均为 77.8% ，深圳莲花百川多旋翼无人机和三禾永佳自走式喷雾机防效均为 73.3% ，河南田秀才多旋翼无人机和湖南金骏单旋翼无人机防效均为 66.7% ，湖南丰茂远程精准喷雾机防效只有 7.3% 。（详见表 5）

药后 7 天对卷叶率的相对防效：日本丸山和三禾永佳自走式喷雾机防效均为 85.3% ，湖南金骏单旋翼无人机防效为 82.4% ，担架式喷雾机防效为 79.4% ，大方植保单旋翼无人机防效为 76.5% ，常德邦达和深圳莲花百川多旋翼无人机防效均为 70.6% ，河南田秀才多旋翼无人机防效为 64.7% 。各处理田块之间，稻纵卷叶螟发生量及危害程度差异较大，广州尊农多旋翼无人机施药区和湖南丰茂远程精准喷雾机施药区稻纵卷螟幼虫发生量较大，危害卷叶率明显高于空白对照区，其防效无法比较。（详见表5）

药后 14 天调查结果，对幼虫的校正防效：三禾永佳自走式喷雾机防效为 76% ，广州尊农多旋翼无人机防效为 73.6% ，常德邦达多旋翼无人机和大方植保单旋翼无人机防效均为 70% ，日本丸山自走式喷雾机和担架式喷雾机防效均为 60% ，深圳莲花百川多旋翼无人机防效为 52% ，湖南丰茂远程精准喷雾机防效为 49.9% ，河南田秀才多旋翼无人机和湖南金骏单旋翼无人机防效均为 40% 。因广州尊农多旋翼无人机施药区和湖南丰茂远程精准喷雾机施药区稻纵卷蟆幼虫偏高，而其他处理区稻纵卷叶螟幼虫量均很低，因而防效较低。（详见表5）

药后 14 天对卷叶率的相对防效：大方植保单旋翼无人机防效为 81.1% ，常德邦达多旋翼无人机防效为 79.3% ，三禾永佳自走式喷雾机防效为 77.5% ，日本丸山自走式喷雾机和担架式喷雾机防效均为 76.6% ，湖南金骏单旋翼无人机防效为 73.9% ，深圳莲花百川多旋翼无人机防效为 65.8% ，河南田秀才多旋翼无人机防效为 55.9% ，广州尊农多旋翼无人机施药区和湖南丰茂远程精准喷雾机施药区

稻纵卷蛽危害卷叶率明显高于空白对照区，其防效无法比较。（详见表5）

3，稻飞虱防效

施药前调查虫口基数，施药后第 3 天和 7 天调查防治效果，采用平行跳跃式取样，调查 20 个点，每点 2 丛，计数稻飞風活虫数，计算虫口减退率和校正防效。

药效计算方法：

校正防效 $(\%)=-\frac{\text { 药划处理区虫口减退率一空白对照区虫口减退率 }}{1-\text { 空白对照区虫口减退率 }}$
药后 3 天校正防效：日本丸山自走式喷雾机防效为 92% ，三禾永佳自走式喷雾机防效为 88.7% ，担架式喷雾机防效为 87.6% ，湖南金骏单旋翼无人机防效为 84.6% ，常德邦达多旋翼无人机防效为 84.3% ，河南田秀才多旋翼无人机防效为 77.9% ，广州尊农多旋翼无人机和深圳莲花百川多旋翼无人机防效均为 77.3% ，大方植保单旋翼无人机防效为 74% ，湖南丰茂远程精准喷雾机防效为 71.2% 。（详见表6）

药后 7 天校正防效：日本丸山自走式喷雾机防效为 97.3% ，三禾永佳自走式喷雾机防效为 94.9% ，担架式喷雾机防效为 93.5% ，湖南金骏单旋翼无人机和常德邦达多旋翼无人机防效均为 92.6% ，河南田秀才多旋翼无人机防效为 88.1% ，广州尊农多旋翼无人机防效为 80.1% ，深圳莲花百川多旋翼无人机防效为 88.6% ，大方植保单旋翼无人机防效为 77.5% ，湖南丰茂远程精准喷雾机防效为 74.2% 。 （详见表6）

4，纹枯病防效
第一次施药之前基数调查，第二次施药前调查基数和防效，第二次施药后 7天和 14 天调查防治效果。

调查方法和分级标准：调查采取定点对角线 5 点取样法，每点固定调查相连 5 丛，共 25 丛，记录总株数，病株数和病级数。

分级标准如下：
0 级：全株无病
1 级：第四叶片及其以下叶鞘，叶片发病（以顶叶为第一叶片）
3 级：第三叶片及其以下叶鞘，叶片发病
5 级：第二叶片及其以下叶鞘，叶片发病
7 级：剑叶叶片及其以下叶䩸，叶片发病

9 级：全株发病，提早枯死
药效计算方法：

$$
\text { 病情指数 }=\frac{\sum(\text { 各级病株数 } \times \text { 各级代表值 })}{\text { 调查总株数 } \times \text { 最高级代表值 }}-\times 100
$$

C 只病情指委 \times PT 病情指数
注：CKO－－空白对照区药前 PTO－－药剂处理区药前 CK1－－空白对召区永后 PT1－药剂处理区药后

如果施药前没有调查病情基数，请按下式计算药效：

第一次施药前调查纹枯病基数时各处理均未见发病，而第一次施药时加了防纹枯病的药对纹枯病进行预防，第二次施药后计算防效时均采用相对防效，即按第二种方法计算防效。

第二次施药后 7 天防效：日本丸山自走式喷雾机防效为 89.3% ，湖南金骏单旋翼无人机防效为 87.5% ，广州尊农多旋翼无人机防效为 83.2% ，三禾永佳自走式喷雾机防效为 81% ，湖南丰茂远程精准喷雾机防效为 77.2% ，担架式喷雾机防效为 69.2% ，大方植保单旋翼无人机防效为 67.6% ，河南田秀才多旋翼无人机防效为 55.8% ，常德邦达多旋翼无人机防效为 35.9% ，深圳莲花百川多旋翼无人机防效为 36% 。（详见表 9 ）

第二次施药后 14 天防效：日本丸山自走式喷雾机防效为 86.5% ，湖南金骏单旋翼无人机防效为 85.2% ，广州尊农多旋翼无人机防效为 83.9% ，三禾永佳自走式喷雾机防效为 78.8% ，湖南丰茂远程精准喷雾机防效为 77.2% ，担架式喷雾机防效为 69.3% ，大方植保单旋翼无人机防效为 70.5% ，河南田秀才多旋翼无人机防效为 55% ，常德邦达多旋翼无人机防效为 40.9% ，深圳莲花百川多旋翼无人机防效为 44% 。（详见表10）

四，自走式喷雾机施药对禾苗压损情况调查

每种施药机械各调查一丘田，每丘田调查 2 个点，即直线行走处和转弯处各调查 1 个点。每个点的调查面积为施药机械前进 1 米的距离乘以施药机械的施药宽幅，即日本丸山自走式喷雾机调查 $5 \mathrm{~m}^{2}$ ，三禾永佳自走式喷雾机调查 $6 \mathrm{~m}^{2}$ 。计

数调查面积内水稻总丛数和压损丛数，计算压损率。
分藥期：三禾永佳自走式喷雾机平均压损率为 2.2% ，日本丸山自走式喷雾机平均压损率为 2.7% 。（详见表11）

孕穗末期：三禾永佳自走式喷雾机平均压损率为 2.4% ，日本丸山自走式喷雾机平均压损率为 3% 。（详见表 11 ）

总压损率即为两次压损率之和，三禾永佳自走式喷雾机平均压损率为 4.6% ，日本丸山自走式喷雾机平均压损率为 5.7% 。三秋佳自表式喷雾机施药宽度大于日本丸山自走式喷雾机，因此，三我永佳自定式喷雾杺压损率小于日本丸山自走式喷雾机。直播稻压损率要入于玏秧日

五，总体评价

（一）作业效率
从两次施药总体情况看，不同类型施药机械，作业效率差异较大，无人机作业效率最高，其次为自走式喷雾机，担架式喷雾机和远程精准喷雾机作业效率最低。同一类型施药机械之间的差异，主要取决于机手的操作水平和熟练程度及施药人员之间的配合情况。如果不考虑施药人数，只算纯施药效率，即每分钟施药多少亩。两次平均，河南田秀才多旋翼无人机为 1.16 亩／分钟，湖南金骏单旋翼无人机为 1.05 亩／分钟，大方植保单旋翼无人机为 0.99 亩／分钟，深圳莲花百川多旋翼无人机为 0.8 亩／分钟，担架式喷雾机为 0.79 亩／分钟，日本丸山自走式喷雾机和湖南丰茂远程精准喷雾机均为 0.75 亩／分钟，常德邦达多旋翼无人机为 0.74 亩／分钟，三禾永佳自走式喷雾机为 0.72 亩／分钟，广州尊农多旋翼无人机为 0.62 亩／分钟。
（二）防治效果
不同的处理区及同一处理区的不同田块之间，各种病虫发生程度存在一定差异，特别是稻纵卷叶螟田块之间差异明显，同时调查取样也有差异，因而调查的结果也有一定的差异。通过对每一种施药机械的施药区域大范围查看目测，每一类型施药机械对各种病虫的总体防效，我们认为，自走式喷雾机和担架式喷雾机总体防效要好一些，远程精准喷雾机和无人机总体防效相对差一些，主要是对纹枯病和二化螟，其次是对稻纵卷叶螟防效差一些，可能与药液量多少有一定关系。
（三）不同类型施药机械的优缺点
1，自走式喷雾机
优点：喷雾雾量大，雾滴均匀，喷雾低，不易飘移，不易漏喷，有利于保证防效。喷幅宽，作业效率高，施药人员劳动强度低。

缺点：压坏禾苗，压坏田埂，在田块水平高度差别大的地方不太适应。需水量较大，水稻后期田间缺水，取水较困难，对水源有一定要求。同时，施药区域

田块的大小，田块的形状对施药也有一定影响。
建议：适合在平原地区，或土地平整过的地方，田块大小，形状较规则，且水源条件较好的地方使用。适合机插秋使用，抛秋田最好根据施药机械的施药宽度预留工作行。

2，担架式喷雾机和远程精准喷雾机
优点：喷施均匀，药液充足，施药精准到位，不易漏喷，有利于保证施药效果，施药时受地型的限制小。

缺点：施药人员劳动强度大，工作辛苦，特别是拿共们的只负，接触药液较多，对身体有一定影响，施药听义须戴戴子防户沿施。施药人员较多，影响作业效率。水稻生育后期，17间㓡水，施药取水较困难。

建议：只要水源条件尚可，均可使用。
3，多旋翼无人机
优点：操作轻松，施药人员劳动强度低，不受地型限制，需水量少，受水源条件限制小。

缺点：电池续航时间短，更换电池频繁，影响作业效率，需同时配备多组电池。施药液量少，喷雾雾滴细，易飘移，施药时受自然风速的影响较大。施药中途更换电池或施药时操作不当，易造成漏喷或重喷，影响防效或有可能造成药害。

建议：可根据实际情况合理选用。要求机手操作熟练，施药时要求飞机飞行平稳，飞行高度保持一致。

4，单旋翼无人机
优点：操作轻松，施药人员劳动强度低，不受地型限制，需水量少，受水源条件限制小。采用汽油机作动力，动力好，能保证续航时间，提高作业效率。

缺点：施药液量少，喷雾雾滴细，易跲移，施药时受自然风速的影响较大。施药时，机翼旋转风力较大，飞行过高易造成雾滴飘移，影响防效，飞行过低造成禾苗倒伏，水稻生育后期施药可能对水稻造成一定影响。个别机型对使用药剂的剂型有选择性，使用药剂受到限制。施药时操作不当，易造成漏磺或重喷，影响防效或有可能造成药害。

建议：可根据实际情况合理选用。要求机手操作熟练，施药时要求飞机飞行平稳，飞行高度保持一致。需对喷头进一步改进，尽量适应各种农药剂型的使用。

总之，所展示的施药机械各有所长，均有一定的优点，也存在不同的缺点，服务组织可根据自身情况，结合所服务区域的地理位置，地形条件等综合考虑，合理选用。

